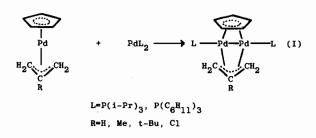
Preparation and Suggested Structure of a Binuclear Palladium Complex containing Two Cyclopentadienyl Groups

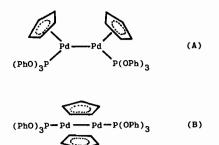
KEINOSUKE SUZUKI*


College of Medical Technology, Nagoya University, Daikocho, Higashi, Nagoya, Japan 461

and AKIHIKO JINDO

Inorganic Chemistry Laboratory, Faculty of Science, Nagoya University, Chikusa, Nagoya, Japan 464

Received September 3, 1979


A cyclopentadienyl group is one of the most important ligands in organometallic chemistry. Recently Werner *et al.* [1] and Turner *et al.* [2] have synthesized new dimeric palladium(I) complexes which contain a cyclopentadienyl group coordinated to the Pd(I)-Pd(I) bond. Further, Werner *et al.* [3] presented an interesting synthetic method which led to formation of complexes of type (I).

However this method is not suitable for the synthesis of a complex containing two bridging cyclopentadienyl groups, because starting material palladocene has not been obtained yet. Turner *et al.* [4] also tried the reaction of μ -(η^3 -C₅H₅) μ -BrPd₂L₂ (L = PPh₃, P(i-Pr)₃) with TlC₅H₅ in an attempt to replace the bridging bromine atom with a cyclopentadienyl group without success. In this paper we describe the preparation of [μ -(C₅H₅)PdP(OPh)₃]₂ (II).

To a solution of 1.7 g of NaC_5H_5 in 200 ml of tetrahydrofuran cooled to 0 °C under nitrogen was added with stirring 4.3 g of $Pd_2Cl_4{P(OPh)_3}_2$ in 200 ml of tetrahydrofuran. After a short time the solvent was distilled off under vacuum and the residue was washed with ether and water and recrystallised from $CHCl_3$ -n-pentane to give a yellow crystalline compound (II). Anal. Found: C, 57.4; H, 4.7; P, 6.5. Required for $C_{46}H_{40}O_6Pd_2P_2$: C, 57.3; H, 4.2; P, 6.4. Mol. wt. Found: 1060. Required for $C_{46}H_{40}O_6Pd_2P_2$: 963.

The analytical data and molecular weight of the complex (II) strongly indicate that (II) is a dimeric palladium complex $[\mu-(C_5H_5)PdP(OPh)_3]_2$ for which two structures (A) and (B) are possible.

We can distinguish between (A) and (B) by the ¹H nmr spectrum of the cyclopentadienyl protons which couple with the two phosphorus atoms. Thus we can expect a doublet of doublets for (A) and a triplet for (B). As Fig. 1 shows, the cyclopentadienyl and the phenyl protons appear as a triplet (τ 4.93) and a singlet (τ 2.7) respectively. Their intensity ratio 1:3:2 (C₅H₅:P(OPh)₃ is in agreement with the formulation of (II). These results allowed us to assign the structure (B) – the structure containing two bridging C₅H₅ groups – to the complex (II). The coordination mode of the C₅H₅ groups is not clear at present: recently, Turner *et al.* [2] showed that the C₅H₅

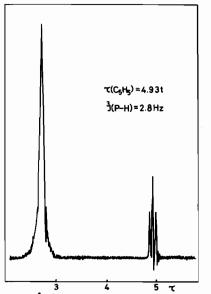


Fig. 1. ¹H nmr spectrum of $[\mu-(C_5H_5)PdP(OPh)_3]_2$.

^{*}Author to whom correspondence should be addressed.

bridge in μ - $(\eta^3$ -C₅H₅)- μ -BrPd₂{P(i-Pr)₃}₂ can be regarded as an allyl plus alkene group. Further, a complex incorporating two bridging allyl groups, $[\mu (\eta^3 - C_3H_4)PdP(i-Pr)_3]_2$, has been synthesised [4]. Therefore, it might be reasonable to assume that the C_5H_5 groups in (II) behave as bridging allyl groups. The reactions of (II) with other compounds are under investigation.

References

- H. Werner, D. Tune, G. Parker, C. Kruger and D. A. Brauer, Angew. Chem., 87, 205 (1975).
 A. Ducruix, H. Felkin, C. Pascard and G. K. Turner, Chem.
- Commun., 615 (1975).
- 3 H. Werner and A. Kuhn, Angew. Chem., 89, 427 (1977).
- 4 H. Felkin and G. K. Turner, J. Organometal. Chem., 129, 429 (1977).